
Available online at www.sciencedirect.com
Tetrahedron Letters 48 (2007) 8189–8191
Synthesis of fluorinated 1,8-naphthyridinone derivatives
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Abstract—Processes for the synthesis of fluorinated 1,8-naphthyridinone derivatives including 6,7-difluoro-1,8-naphthyridin-2-one
are described.
� 2007 Elsevier Ltd. All rights reserved.
The 1,8-naphthyridine core is a versatile template for
drug discovery. This structure is incorporated in numer-
ous biologically active compounds and drugs which act
by various mechanisms for diverse indications. Among
these are compounds useful as antibacterials,1 anticon-
vulsants,2 antihypertensives,3 and inhibitors of both
ACAT4 and platelet aggregation.5 Compounds contain-
ing the 1,8-naphthyridin-2(1H)-one (1) skeleton can illi-
cit phosphodiesterase6 and kinase activities7 which have
been indicated as treatments for asthma, proliferative
and inflammatory disorders. In our laboratory, the
1,8-naphthyridin-2(1H)-one fragment has provided
compounds which are potentially useful for the treat-
ment of schizophrenia and bipolar disorder.8

From the above examples, structural changes surround-
ing a lead molecule with a 1,8-naphthyridine core are
often desired in order to optimize the potency and selec-
tivity against receptors and modulate the physical and
ADME (absorption, distribution, metabolism, and
elimination) properties of the molecule. The incorpora-
tion of fluorine into a lead molecule can alter its chem-
ical properties (Pauling electronegativity of fluorine is
3.98 versus 2.20 for hydrogen), pharmacokinetic and
pharmacodynamic properties (metabolic stability and
absorption), and biological activity.9a It has been recog-
nized that fluorine substitution on aromatic rings can be
used to redirect metabolism while often preserving or
improving receptor binding of medicinal compounds.9b

Furthermore, aromatic fluorine can participate in
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hydrogen bonding interactions.9c An example of a drug
containing a fluoro substituted naphthyridine core is the
fluoroisoquinolone antibiotic enoxacin. Therefore, the
incorporation of fluorine in a variety of naphthyridines
would be expected to provide highly desirable intermedi-
ates for the synthesis of new drug candidates.

We describe herein the synthesis of a series of
fluorinated 1,8-naphthyridinone fragments including
6-fluoro-7-(4-hydroxybutoxy)-3,4-dihydro-1,8-naphthyri-
din-2(1H)-one (2), 6-fluoro-7-(4-hydroxybutoxy)-1,8-
naphthyridin-2(1H)-one (3), 3-fluoro-7-(4-hydroxybut-
oxy)-1,8-naphthyridin-2(1H)-one (4), and 6,7-difluoro-
1,8-naphthyridin-2(1H)-one (5).
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The synthesis of 6-fluoro-dihydronaphthyridinone
analog 2 began with the synthesis of intermediate 10
as shown in Schemes 1 and 2. Regioselective displace-
ment of the 6-chloro of 2,6-dichloro-5-fluoronicotino-
nitrile (6) by the alkoxide formed from 4-benzyloxy-1-
butanol (7) proceeded in good yield to give 8. This
was the same regiochemical preference as observed by
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Scheme 1. Reagents and conditions: (a) BnO(CH2)4OH (7), t-BuOK,
THF, �78 �C to rt, 3 h, 70–80%; (b) NaN3, DMF, 70 �C, 84%; (c)
(Me3Si)2S, MeOH, rt, 86%.
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Scheme 2. Reagents and conditions: (a) BnO(CH2)4OH (7), t-BuOK,
THF, �70 �C to �50 �C, 1 h, reaction mixture carried to next step; (b)
p-methoxybenzylamine, �70 �C to rt, 70% over two steps; (c) TFA,
�8 �C to rt, 1.5 h, 67%.
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Scheme 3. Reagents and conditions: (a) DIBAL-H, THF, 0 �C,
10 min, 66–79%; (b) Ph3P@CHCO2Et, THF, reflux, 50%; (c) H2

(40 psi), RaNi, THF, rt, 1 h; (d) p-toluenesulfonic acid, i-PrOH, 80 �C,
30 min, 92% over two steps; (e) H2 (60 psi), Pd–C, EtOH, rt, 1 h, 88%.
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Scheme 4. Reagents and conditions: (a) 3 N HCl, dioxane, reflux, 1 h,
53%; (b) H2 (50 psi), Pd–C, EtOH, rt, 2 h, 87%.
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Scheme 5. Reagents and conditions: (a) THPO(CH2)4OH (20), NaH,
DMF, 0 �C, 1.5 h, 46%; (b) 2 equiv (EtO)2P(O)CHFCO2Et, 2 equiv
LiCl, 2 equiv DBU, CH3CN, rt; (c) 3 N HCl, dioxane, reflux, 2 h, 26%
over two steps.
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Miyamoto et al.10 Conversion of the 2-chloro of 8 to an
amino group was accomplished by either of the two
methods. The first method involved the displacement
of the chloro group with sodium azide to give azide 9
followed by reduction to the amine using hexamethyldi-
silathiane in methanol11 to give the amine intermediate
10 in 86% yield.

In Scheme 2, an alternate introduction of the C2-amine
started with the more reactive intermediate 2,5,6-tri-
fluoropyridin-3-carbonitrile (11, source: ABCR
F07832MF). Addition of the alkoxide of 7 at low
temperature proceeded with high selectivity at C6 to
give 12. Subsequent addition of p-methoxybenzylamine
in a one-pot sequence resulted in the displacement of
the fluoro group at the activated C2 site to give the
desired product 13 in 70% yield. The p-methoxybenzyl
group was removed using TFA to give 10 in 67% yield.

Scheme 3 continues with the reduction of the nitrile in
compound 10 to aldehyde 14 with DIBAL-H. Wittig
reaction of aldehyde 14 with (carbethoxymethylene)-tri-
phenylphosphorane provided 15 as a mixture of cis and
trans isomers. The mixture was hydrogenated in the
presence of Raney nickel to give 16 which was easily cyc-
lized under acidic conditions to give dihydronaphthyrid-
inone 17. A more rigorous hydrogenation removed the
benzyl protecting group to give 2.

In Scheme 4, the analogous 3,4-dehydro compound 3
was prepared from the common intermediate 15. Treat-
ment of 15 with 3 N HCl in refluxing dioxane resulted in
cyclization to provide 18 in 50% yield. Conditions were
selected for the hydrogenation to affect selective removal
of the benzyl protecting group without reducing the
naphthyridinone ring system to give 3.
The synthesis of the 3-fluoro substituted naphthyridi-
none 4 started from the pivaloyl protected intermediate
19 (Scheme 5).12 Similar to the preparation of 8, reaction
of the alkoxide of 4-(tetrahydro-2H-pyran-2-yloxy)-
butan-1-ol13 (20) with 19 gave 21 in 46% yield. With
the aldehyde already in place, a Wittig reaction with
triethyl-2-fluoro-2-phosphonoacetate was performed to
give a cis/trans mixture of 22. Unpurified 22 was cyc-
lized under acidic conditions which also resulted in the
removal of the THP protecting group to yield 4.

As we wished to avoid additional synthetic and depro-
tection steps in the synthesis of compounds containing
the 1,8-naphthyridin-2(1H)-one core, we prepared 6,7-
difluoro-1,8-naphthyridin-2(1H)-one (5) to serve as a
more general synthetic intermediate (Scheme 6). Previ-
ously in the literature, 2,5,6-trichloronicotinic acid was
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Scheme 6. Reagents and conditions: (a) 28% NH4OH, 150 �C
(pressure vessel), 24 h, 43%; (b) DD,LL-malic acid, concd H2SO4,
115 �C, 1 h, 97%; (c) 70% HF-pyridine, KNO2, 20 �C, 2 h, 43%.
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decarboxylated during reaction with aqueous ammonia
to give 3-chloro-2,6-diamino-pyridine.14 By analogy,
2,6-dichloro-5-fluoro-nicotinic acid (23) upon heating
with ammonia gave 2,6-diamino-3-fluoropyridine (24).
Treatment of 24 with DD,LL-malic acid in concentrated sul-
furic acid afforded 7-amino-6-fluoro-1,8-naphthyridin-
2-one (25) in high yield similar to that reported in the
literature for the conversion of 2,6-diaminopyridine to
7-amino-1,8-naphthyridin-2-one.15 Finally, diazotiza-
tion of 25 in the presence of HF-pyridine gave the
desired 6,7-difluoro-1,8-naphthyridin-2-one (5).16 Com-
pound 5 bears an activated fluorine at the 7 position
which is easily displaced by amines or alkoxides and
thus, provides a useful intermediate for further investi-
gation of the 6-fluoro-1,8-naphthyridin-2-one series.
Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.tetlet.2007.
09.090.
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